

RecruitR

Team Avalanche
Zane Grasso David Dubois Maxwell Hadley John Murray

Project Sponsor
Jim Bondi - RIT Career Services

Faculty Coach
Timothy Whitcher

Project Overview
RecruitR, also referred as Tinder For Career Services, is the project that was assigned to Team
Avalanche. RecruitR is a mobile application that aims to create a useful program that can make
the recruiting process easier as well as quicker for both recruiters and job seekers (specifically
students). The application will have three main users: the recruiter, the student, and system
admin. The goal of the recruiter will be to find acceptable student candidates with desired skills
for a certain position and eventually give them an interview. The tool will assist in the skill
matching and selections for the recruiter as well. For the student, the goals will be to eventually
land that interview for a position that they have the skills for. The job position/recruiter can also
be filtered out by students.

The high level scope of RecruitR is to provide a prototype to the project sponsor. As stated above
the final goal of both parties(recruiter and student) is to set them up for an interview for a
specific job posting. Before and interview is rewarded, there are three other phases that must be
completed prior. We define these phases as Matching Phase(student only), Problem Phase, and
Presentation Phase. The last phase, the interview, we define as just Interview Phase. The
following section describes each phase and how the application flows between them on both the
recruiter and student side. Each phase represents a different screen within the app, not including
login and registration pages.

Matching Phase

The matching phase is only completed by the student. When a student registers an account, he/or
she must enter their skills before the rest of the app can be used. These skills are used to be
matched with Job Postings (see Job Posting Creation). The way skills are matched with jobs is
referenced later in the document. Once skills are entered, students can view their homepage,
which is a list of job postings that they have been matched with. In this phase, students can view
a job postings’ information and decide if they are interested in a certain position or if they find

1

no interest in the position. If they are not interested in the posting, the matched posting will be
removed from their homepage. If the student decides they are interested in the job posting, they
are moved on to the next phase within that job posting, the problem phase. The recruiter that
created the job posting can now see that the student is interested in the position within their
dashboard. The only information that is shown about the job posting in the matching phase, is the
position’s title, the name of the company, the location of the company, and the company’s
website.

Problem Phase

After a student selects that they are interested in a particular job posting, they are then moved on
to the Problem Phase. The overview of this phase is that it a chance for the recruiter to provide
students with a problem, or problem statement, and give them a chance to answer/respond. This
phase is not meant to provide a problem like you might see at a technical interview where you
would have to solve it to the best of your abilities, but more to introduce student with material
and issues that the position might deal with. On the other side, this gives recruiters the
opportunity to review students’ responses to these problems and see what sort of experiences
they have and how they can use their experiences to apply it in the positions environment.

On this screen, students can view the problem statement. Once the statement is read, they then
write a response in the text field that is given to them. When the response is finished and ready to
submit, the student submits the response. If the student feels they are not interested in the
position anymore after reading the problem, they have the ability to opt out of the specific job
posting. They will no longer be active on this posting and will not be able to view it. The
Problem phase is not the only phase in which the student can opt out. A student can opt out of a
job posting at any point of the process. As well as recruiters can decide they are no longer
interested in a student at any point. When a recruiter is no longer interested in a student, that
student is removed from the job posting and is notified.

Once a student submits a response, the response is immediately sent to the recruiter for review.
The recruiter then decides if they are interested in the student continuing in the recruitment
process. If the recruiter decides they are still interested, the student moves on to the next phase,
Presentation Phase. If the recruiter is not interested after reading their response, the student is
removed from the job posting and is notified.

Presentation Phase

If a student has made it past the Problem Phase they are brought to the Presentation Phase. This
phase is like the last, except instead of reviewing a problem and a response, a recruiter and
student are reviewing a presentation. The student views a presentation of the company, that the
Company submits on company registration, therefore one company has one presentation, no
matter the job posting. A presentation can be in many different formats, including: video, slide
show, or a combination of the two.

2

After the student has viewed the company’s presentation, they then have to decide if they are still
interested in the job posting. If they aren’t they they are navigated out of the posting. If they are,
then they must create a presentation to send to the recruiter. This presentation is meant to sell the
student to the recruiter and help identify why they are right for this position. Again, this
presentation can be in many different formats. For the scope of this project we decided that all
presentations would be an embedded youtube video, so all students/companies would have to do
is insert the link of the video. There is a time limit in which the student has to respond, with a
presentation, or the job posting is automatically removed. (See Job Posting Creation). Once a
presentation is created and sent off to the recruiter, they must wait until the recruiter decides if
they are still interested in them. If the recruiter is still interested in the student after viewing their
presentation, the student is moved to the next and final phase, Interview Phase. If the recruiter is
no longer interested, the job posting is removed from the student and the student is notified.

Interview Phase

Students must have “passed” the last two phases in order to get to the Presentation Phase. This is
the final phase of the recruitment process and the goal of both the student and the recruiter; to get
to this point. This phase is where both sides get to see more information about each other and
one last glance before an interview date is committed. We also call this the reward phase because
both parties are rewarded in a certain way, in which we will explain below.

Student’s Reward
When a student makes it to this phase they are now able to see remaining information about the
job position that you would normally see on a job posting. Information like: position description,
more detailed location, and recruiter contact information. Most importantly students are provided
with a view of interview time/date slots, in which they can choose a slot that works best for them
to go and interview for that specific job position.

At this Phase, students still have the opportunity to say they are not interested in the position and
opt out, before they schedule an interview. If the student does decide they are still interested after
reading all the additional information about the posting, they must select a date slot in order for
the interview to be scheduled. Once a date slot is selected it is then removed from available, so
other students can choose from the same slot, and moved to the students list of scheduled
interviews. An interview is now formally scheduled for that position.

Recruiter Reward
Once a recruiter accepts a student from the Presentation Phase to the Interview Phase, they can
now see more information about the student. Information like their resume and contact
information. They also see when the interview time and date is if the student accepts the
interview and chooses a time slot.

Once the interview is scheduled the application functionality is over for that job posting. If

3

interview times or dates need to be changed or there are cancellations, it is up to the two parties
to communicate with each other through the given contact information provided in this phase.
The application will, however, remind both parties of a scheduled interview.

Job Posting Creation
A job posting is obviously only created by the recruiter. This is where a recruiter inserts all the
necessary components that are needed for the student to view throughout each phase (except
presentation; Company) . Each posting will need the following information:

● Position title
● Location of position
● Description of the position
● Required skills
● Recommended skills
● Response timeout
● Problem statement

Required skills are weighed more heavily than recommended skills when looking for student
matches. This will be described more in depth in the design section (See matching algorithm).
Response timeout is the amount of time a student has to respond in that phase. This timer will be
from days to weeks. If a student doesn’t respond by the specified timeout, they are automatically
kicked from the posting. This timeout is also include in the Interview Phase.

Recruiter Dashboard

Unlike a student, the recruiter’s home page is the list of job posting that they created. They also
have a dashboard, where they can also view how many students are in each phase of their job
posting. Each student’s information is kept confidential, until the interview. Other dashboard
items include editing a job posting and profile management.

Student Dashboard

Students also have a dashboard. Their dashboard includes categories like: interviews scheduled,
job postings in progress, profile management, and skills management. Interviews scheduled are
job postings that the student has made it to the Interview Phase and have accepted an interview
and a time slot. Job postings in progress are the postings the student is currently in a phase with.
Profile management is where a student can view and edit information about their profile;
password, notification setting, graduation date, etc. Skills management is where the student can
go in and add skills to their profile.

User Registration

4

Users that don’t have an account must register a new one. For students, they must provide the
registration screen with their school email in order to sign up. If the user does not have a school
email, they can not register as a student. Recruiters must provide the screen with their company
email. If the company email is not in our systems database, then the company has to register (See
company Registration,.

New Company Registration

We require that new companies have to be verified before recruiters can register and start
making job postings. The reason for this is to prevent system abusers using the application to
troll other users. For example, creating fake job postings. Whenever a new company registers, a
application admin has to approve the company before anything else can be completed under that
company name.

In conclusion, the overall application's goal is provide the sponsor with prototype of and
IOS/Android app that streamlines the recruiting process and makes it more efficient. The end
result that both main users are striving for is getting an interview scheduled for a job posting.

Basic Requirements
System Features

Student login and profile management

This feature allows a student to create and maintain a profile. Students can enter their contact
information, skills, and preferences for what sort of jobs they want such as preferring large
companies or preferring companies in coastal cities, and may upload their resume. They can also
update this information as it changes over time.

Functional Requirements:

● Students can create new profiles
● Profiles shall be identified by the student’s email address
● Student profiles shall always contain the student’s name, email address, school,

anticipated graduation date, and skills; optionally phone number
● Students must upload their resume
● Students may add job preferences to their profile
● Students may change their job preferences, skills, school, graduation date, or name at any

time

Recruiter login and company profile management

This feature allows recruiters to create and maintain profiles for their company. Company

5

profiles have the company name, location(s), size, a brief description, and a presentation which
exhibits the company’s culture. Recruiters may edit this information at any time.

Functional Requirements

● Recruiters shall be able to create profiles
● Recruiter profiles shall contain the recruiter’s name and company email address
● Recruiter profiles shall be associated with one company profile
● Company profiles shall have company name, location(s), size, description, link to a

youtube presentation about the company, and the domain of all emails used by recruiters
of that company

● Recruiters shall specify a schedule with the times they are available to conduct interviews

Administrator login and system management

This feature allows administrators to create other administrators, approve or deny new recruiters,
approve or deny new recruiters, and view statistics and reports about RecruitR.

Functional Requirements

● Administrators shall be able to create a new administrator which includes a email,
password, and username

Recruiter job posting

This feature gives the recruiter the opportunity to post a job position that they would like to find
students to potentially interview for. These postings contain all the information that a student
would be able to see if they end up navigating through all the phases. The posting shall also
include information on how long a student may spend at each stage before the student is
considered to have been rejected

Functional Requirements

● Recruiters can create new posting
● Recruiters must enter the name of the position, location of position, description of

position, and the skills that are required and/or recommended
● Recruiters must enter the amount of time that a student may spend on each phase before

the student is automatically rejected
● Recruiters must enter a problem statement

Student job matching

This feature gives the student the ability to look through job postings that match their skills and
opt into the application process with the company

Functional Requirements:

● Student is matched with job postings automatically based on the intersection of their
skills and the required/recommended skills of the position

● Student can begin the application process with a matched job posting
● Student can view all matched job postings
● Student can sort matched job postings by most recent, most matched skills, location, and

6

company size

Problem phase

This feature allows recruiters to tell student the sorts of problems that students will work on at
their company, and allows students to respond with project they have worked on that solve these
problems, or to talk about how they might solve these problems.

Functional Requirements

● Job postings shall have a list of problems or a problem statement that the student will
either be expected to solve or respond to while on the job

● Students shall be shown the problems while they’re applying for a job
● Students shall be prompted to respond with how they would solve these problems, or

with how they have solved these problems in the past
● Students shall create and submit a response
● Students shall submit a response
● Recruiters shall see the student’s response
● Recruiters shall either accept or reject a student’s response

Presentation Phase

This feature allows students to view a presentation about the company they’re applying for,
create a presentation about themself and their skills, and allows recruiters to view the student’s
presentation

Functional Requirements

● The recruiter’s presentation shall be shown to all students who have applied for a job at
the recruiter’s company and who have passed the problem phase

● Students may accept or reject the recruiter’s presentation
● If a student rejects a recruiter’s presentation, the student shall no longer be considered to

be applying for the job
● The system shall record how many students reject an recruiter at the presentation phase
● If the student accepts a recruiter’s presentation, the student shall create a presentation

about themself and their skills
● The recruiter shall either reject or accept the student’s presentation

Interview Phase

This phase will be awarded to students who have been accepted through all phases by the
recruiter. This phase includes the postings’ job description, a calendar where the student can
select a interview date and time slot.

Functional Requirements

● Student must be able to view all of the postings’ information such as position title,
company, description, location, and a calendar of available time slots for an interview

● A student must be able to select an open time slot from calendar
● A student must be able to view the contact information of the recruiter

7

● A student must have the ability to cancel an interview that has already been scheduled

Recruiter Dashboard

This feature will allow the recruiter to view all applicants for a job posting, as well as what phase
of the application process the applicant is at. The recruiter will be able to view notifications
about the status of the job posting, such as actions needed and interview schedules.

Functional Requirements:

● Recruiter will be able to view the name and phase of all applicants currently in the
application process

● Recruiter will receive notifications on this page when an applicant reaches a stopping
point or interview for the job

● Recruiter will be able to view and edit the interview schedule
● Recruiter can cancel interviews
● Recruiter will be able to navigate to individual application steps for each applicant
● Recruiter will be able to sort applicants by name, phase, and most recent activity
● Recruiter will be able to view the resume of applicants in the interview phase
● Recruiter will be able to navigate to their profile and job posting management pages

Student Dashboard

This feature allows the student to view their scheduled interviews, job postings currently active,
navigation to profile and skills management.

Functional Requirements:

● Student must be able to view all active job posting they are interested in
● Student shall be able to view all of their scheduled interviews
● Students shall be able to navigate to their profile and skill management pages
● Student can cancel scheduled interviews

Constraints
As we hit the interim point of this project, reflecting back on the past semester, our team dealt
with numerous constraints. The first, and probably the biggest constraint was undefined
requirements. Requirements gathering took a few weeks too many than expected and this is
largely because there were undefined requirements. Going into the project the sponsor and his
team had a general idea of what they wanted to accomplish. Not having concrete idea on what
the application must have lead to countless sponsor meetings where the majority of the time was
conversation and brainstorming requirements. A lot of the requirements were left to us, the team,
to decide.

Another constraint that the team encountered was Xamarin. Originally we were set to develop
our application through Xamarin native apps. Meaning, we would have to develop the UI

8

separately for iOS and android. After 2 week of the team implementing separate UI’s, we
decided to switch from native to Xamarin Forms, which allows us to work on both UIs
concurrently. Though it took us a couple days to complete what we had natively, we still had the
constraint of last minute UI tool.

One major constraint we had, was the estimation of velocity from our first iteration. We
definitely overestimated what we could complete during the first iteration. This was a little
expected since we had no clear idea what our story points were worth for each task. This was
quickly fixed, as we correctly estimated for iteration 2.

Other constraints included not having enough time to complete certain tasks, the need to learn
new technologies which created a lot of overhead when trying to get the ball rolling on
implementation. And also we had bugs arise as we got closer to the interim milestone that took
us some time to correct so we had a working prototype.

Development Process
Our development process was rapid prototyping, which was our decision and chosen because due
to the less defined nature of our project we wanted to get as much sponsor input on our
development as possible. The primary mandate of the rapid prototyping process was that after
every development iteration, we would provide the sponsor with a working prototype on which
we could get their opinions. This ensures that the project stays in line with the sponsor’s image
of the final product, and gives the team an idea of what isn’t working if we need to change
anything.

Our sponsor has given us a lot of leeway with our methodology, so we picked the process that
best served our needs, while also making sure that our sponsor is confidant in our work. The
primary role identified in our process is the need for someone to present our prototype, and while
we all attend the weekly sponsor meeting, we decided it would be best for our group leader and
sponsor coordinator to be in the driver’s seat for any demonstrations required to show new
functionality. We are all required to make sure that the whole team is informed as to how
completed features work, so ideally anyone could fulfil that role if the need arises.

Project Schedule: Planned and Actual
Planning Process
The majority of the project schedule planning was based on the delivery of features and on our 2
weeks iterations for our process. The plan outlined at the end of what 2 week sprint (by date)
each feature could be expected to be delivered. The current activity breakdown of the project
plan is as follows: Requirements Elicitation, Code/Architecture design, Development and
Testing, and SE Deliverables (Poster, Presentation, etc.). Then other than the end of each
iteration where a small feedback loop process is performed with the sponsor, the only major
milestones are the interim delivery and the final delivery.
Execution of the Plan
At writing of this report the first milestone, interim delivery, has just passed. According to the
project plan outlined on the project plan document, the only features planned for delivery that
have not been delivered is the application phases and job posting filtering. This is likely due to
the fact that for requirements elicitation we went longer than the plan had described. Originally

9

we thought requirements would be more solidly defined coming, however since they weren’t it
required more time than expected to get them fleshed out. Another issue that caused delay was
that during the beginning of implementation when all the team members thought they had their
development environments setup, there was a variety of issues that kept the majority of team
members from developing until about a week after the planned start. Lastly, we had a risk come
to fruition that we had to mitigate; the tool we planned to use, Xamarin, was not as easy to use as
originally anticipated. After about a week and a half of client side development all UI
development had to be scrapped to switch platforms within Xamarin’s set of tools to make things
easier. This however only set us back about a week, and allowed us to gain more momentum as
the new tool was easier to use.
Adaptation to Changes
Because our schedule had changed quite a bit throughout the term, our team had to quickly
adapt. This wasn’t that difficult because after we realized our schedule was off, we had a better
understanding of our velocity and were able to estimate more accurately. As scheduling changed,
so did our priorities to work on this project. Once we realized how much time was actually
needed to be successful, everyone started putting more time in.

If the schedule is to change a lot next semester or later in the project, it would most likely be
more catastrophic, but since schedule changes were made early on, adaptation wasn’t too
difficult and were able to recover easily.

System Design
Overview

The start of the design process began with each individual team member preparing a mental
image of the overall architecture. These models were based on expertise from co-ops and
previous projects. Then when the team came together to discuss the architecture our models were
not very different from each other.

The overall consensus was to use a server-client architecture blended with a MVC architecture.
In this case the server side would have controllers and the model of the MVC while the client
side would also have controllers but instead with views. The duplicate controllers can be thought
as the tracks on both sides of a train tunnel. The controllers pass information back and forth
between each other and then handle what happens to the data after the communication on their
respective sides.

In terms of data communication a simple REST API fits very well into our architecture. Since
views can invoke controllers and controllers don’t sporadically invoke themselves
communication is only performed when the user interacts with the client side application. So as
an examples if a user visits their matches page, the view will invoke the client side controller
which invokes the server side controller via the REST API and then the server controller
retrieves data from the model which is then sent back as a response to the API call and used by
the client-side controller to show on the requested view.

There is only one other part of the server architecture to cover; services. Services are essentially
server exclusive controllers invoked by the other controllers that are apart of the REST API.
They perform manipulations on data within the server. What makes them different is the
manipulation of the data is not on models associated with the services instead it is will the

10

models associated with the controllers in the REST API.

With the integration of these services and the REST API the server architecture was finalized for
the start of implementation as seen in figure 1.

11

As for the client side architecture the only
additional specification is that the controllers are
responsible for communication and that in our
diagram of the client architecture the model is
only the representation of the data maintained
on the server and retrieved/updated by the
communications in the controller. This can be
seen in Figure 2, the final client architecture for
the start of implementation.

Controllers

When moving “down” as it were, the controller’s functionality was outlined as it’s REST API
endpoint calls as can be seen in figure 3.

Figure 3: Outline of controller functionality

Module Student Recruit Recruiter Job Posting Admin Scheduling

Models - Student - Skill
- Match
- Application

- Recruiter
- Company

- Job
Posting

- Admin - Schedule
- Time Slot

Controller
Endpoints

- Register
Student
- Edit
Student
- Get
Student

- Start Application
- Submit Problem
Response
- Approve Problem
Response
- Deny Problem
Response
- Submit Student
Presentation
- Approve student
presentation
- Deny student
presentation
- Get student reward
- Get employer
reward
- Get Application

- Register
Recruiter
- Register
Company
- Edit
Recruiter
- Get
Recruiter
- Edit
Company
- Get
Company
- Approve
Company
- Deny
Company

- Create Job
Posting
- Delete Job
Posting
- Get Job
Posting
- Get Job
Postings for
Recruiter

- Create
Admin
- Generate
Statistics

- Create Schedule
- Get Schedule
-Schedule Interview
-Cancel Interview

How has it gone?

So far implementation has gone fairly well. Everyone on the team seems to grasp the structure of

12

the architecture and how to translate from diagrams to the code implementation. We haven’t had
any trouble following through with our designs into implementation and therefore have not
required any overhauls or refactorings of our design.

Future Considerations

Our implementation adds for the easy addition of modules or services as necessary without
interfering with any of the existing code. Looking forward it appears as though we shall be able
to easily accomplish our goals with the current design. That being said we are aware for risks
regarding the necessity of architecture redesign and have prevention techniques in place,
however the probability is low.

Process and Product Metrics

Product Metrics
We employed the following product metrics:

- Number of bugs per thousand lines of code
- Test code coverage
- Cyclomatic complexity
- Percentage of tests that passed

The number of bugs per thousand lines of code told us how well we were writing code. If this
number got too high, we would have known that we were horrible coders or that we had horrible
team communication, and we would have had to revisit our development process. Fortunately,
this metric never got too high.

Our test code coverage told us how many lines of code we had tested. The original idea for this
metric was to not accept any code changes with less than 80% code coverage. However, as the
requirements elicitation phase dragged on and we needed to quickly ship features for the interim
presentation demo, we began ignoring our test code coverage. We currently have 36% test code
coverage, which tells us that we don’t like writing tests.

Cyclomatic complexity tells us how complex our methods are, and thus how hard to test and how
bug-prone they are. This metric is low for most of the code, rising to nine only for methods
which perform validation on data objects. When this metric gets too high, it’s probably time to
refactor the method for lower complexity. However, we haven’t been formally checking this
metric throughout the project.

Percentage of tests that pass tells us if we’ve found any bugs in our code. Gradle, the tool we’re
using to build the server code, will fail to build if any tests fail, This ensures that we don’t have
any obvious bugs in our code.

Process Metrics
We employed the following process metrics:

- Time tracking
- Slippage chart

13

The time tracking was used to track how much time we spent working each week. We were
given the guideline that we should spend about eight hours per week on senior project, so that’s
what we all aimed for.

The slippage chart was originally intended to help us adjust our schedule as needed. If the
slippage chart showed that we were behind on our schedule, we would adjust our planning to not
put so many tasks in an iteration so that we’d have time to catch up. On the other hand, if the
slippage chart showed that we were ahead on our tasks, we would be able to add more tasks to
the next iteration and get ahead on our work.

The slippage chart ended up not being necessary, since its goals were accomplished by simply
looking at the sprint board for our current iteration. We could quickly check the sprint board and
see how close we were to completing tasks. In addition, we talked amongst ourselves and were
easily able to tell when tasks would take longer than expected, meaning that the slippage chart, if
it had existed, would have been superfluous.

Product State at Time of Interim Presentation
As of the interim presentation, we have the following features completed:

User Management
This includes user registration for the students and recruiters, as well as company registration for
new recruiters. Session management in-app is working, so that communications from app to
server know what user is logged in, and what that user’s role is.

Job Posting
Recruiters posting jobs are supported, and on creation the new job posting is matched to existing
students with similar skills. Currently we support a set of required and good to have skills that
both play a part in the matching of job posting to student, with customizable weights to each.

Matching
Matching students to job postings is working as an internal service on the back end, and a
student’s matches serves as their home page. Whenever a job posting is created or a student
changes their skills, they have a list of generated matches that is updated to reflect the change.

What we would like to accomplish in the next term:

Admin website
We would like to make a website so that administrators can access the site with quicker
navigation and more information. This involves hosting a website, creation of an additional role
of admin, and adding admin overrides to existing authorization methods. This will also include
the collection of statistics, which will be a service that attaches to our existing endpoints, and
collects information about the matching and application process for students.

14

Application Process
After a match is found, students and employers must navigate their way through a problem,
presentation, and interview phase, which have been outlined in the basic requirements section.
We will be adding these phases along with interfaces that will allow recruiters and students to
navigate through a large amount of applicants and applications.

Project Reflection

What went right?

Top-Down Design Process
We employed a top-down process to design our architecture. This process worked very well. We
were able to quickly design an architecture that has so far served us well.

Estimation Process
The process we used to generate estimates was a good one. We utilized planning poker, and were
able to easily arrive at estimates. We were also able to quickly re-estimate after our first iteration,
once we had a better idea of how long tasks actually took

What went wrong?

Extended Requirements Gathering
We spend far longer than expected in the requirements process. This was partly due to how the
requirements were not very well defined at the beginning of the process. We had to spend a few
weeks at the beginning of the semester simply to nail down the main ideas of our product. After
we hammered out the main ideas of our product, we still had to figure out specifics. That took
another few weeks to complete. This had the combined of effect of delaying code design until
after spring break, with code writing following after that.

Separate iOS and Android Apps
When we first started development, we settled on Xamarin since that would allow us to develop
both the iOS and Android apps from the same codebase. Since we didn’t know what we were
doing, we used Xamarin’s Android and iOS GUI libraries, which meant we had to develop the
UI code for iOS and Android separately. Not only did this negate one of the major advantages of
Xamarin, but we quickly discovered that Xamarin’s iOS UI library was incredibly difficult to
use, so much so that we ended up spending two weeks creating a single UI screen when the
equivalent screen took a single day to make with the Android UI library. We switched to the
Xamarin Forms UI library, which not only let us write the same code for iOS and Android but
was also much easier to use than Xamarin’s iOS UI library.

Updating of Scheduling Information
Our team was not proactive at updating tasks with the time they actually took to complete. This
means that we’re unable to accurately evaluate our estimates and thus unable to improve.

15

Using New (to us) Technologies
This point is related to the problem with developing an iOS app. We didn’t have a lot of
experience developing with Xamarin, which caused many hurdles during the first iteration of
development.

Committing to too Much
We over-committed for the first iteration. This isn’t too bad on its own, except that we
over-committed so badly that what we thought would take one iteration ended up taking two.

A big part of that was due to the issues with iOS development mentioned above. We also had
issues with team members getting their environments set up. We should have planned for setting
up development environments and learning the necessary tools, which would have gives us much
more accurate sets of tasks to be completed in each iteration.

16

